← Back to Job Listings
Welocalize logo

Machine Learning Engineer – Generative AI & NLP Specialist

Welocalize
United KingdomFull Time23 hour

Job Summary

We are seeking a Machine Learning Engineer – Generative AI & NLP Specialist to design, develop, and implement cutting-edge AI-driven systems. The ideal candidate will have extensive experience in end-to-end machine learning lifecycles, large language models, and the ability to create scalable, secure, and efficient AI solutions. This role will focus on enhancing translation systems using advanced NLP techniques and Generative AI (GenAI). The successful candidate will work with a talented team to collaborate on impactful projects, contribute to groundbreaking research, and shape the future of AI. With flexible remote work options, $4,000/year travel stipends, and equity in a fast-growing company, this is an exciting opportunity for a seasoned founder or early tinkerer with AI. The role involves designing and optimizing translation systems, taking ownership of the machine learning pipeline, and ensuring compliance with security standards.

ROLE OVERVIEW

The Machine Learning Engineer – Generative AI & NLP Specialist to design, develop, and implement cutting-edge AI-driven systems. This role will focus on enhancing translation systems using advanced NLP techniques and Generative AI (GenAI). The ideal candidate will have extensive experience in end-to-end machine learning (ML) lifecycles, large language models (LLMs), and the ability to create scalable, secure, and efficient AI solutions.

KEY RESPONSIBILITIES

- Design and optimize translation systems leveraging advanced NLP and Generative AI (GenAI) techniques.
- Focus on delivering contextually accurate, multilingual solutions with domain-specific customizations to meet diverse client needs.
- Continuously improve performance using metrics like BLEU scores and human evaluation benchmarks.
- Take ownership of the entire machine learning pipeline, from prototyping and concept validation to scalable production deployment.
- Collaborate with cross-functional teams to align solutions with business objectives and ensure seamless integration.
- Implement monitoring frameworks to track model performance, detect anomalies, and ensure reliability in production.
- Automate pipelines for model retraining and fine-tuning to address data drift and maintain accuracy.
- Deploy highly scalable inference endpoints that handle concurrent requests efficiently while maintaining low latency.
- Ensure compliance with security standards, including encryption, access control, and API authentication.
- Develop well-documented APIs to enable seamless integration of GenAI capabilities into applications and external systems.
- Support API versioning and updates to meet evolving requirements.
- Work with vector and graph databases to enable efficient Retrieval-Augmented Generation (RAG) systems.
- Optimize data retrieval processes and evaluate RAG metrics, such as precision and relevance, to ensure high-quality results.

REQUIREMENTS

- Deep understanding of the full ML lifecycle, including development, training, deployment, and maintenance.
- Proficiency in tools like Weights & Biases (W&B) or MLflow to track and manage experiments.
- Strong Python programming skills, with expertise in ML libraries such as LangChain, LlamaIndex, PyTorch, TensorFlow, NumPy, SciPy, pandas, and scikit-learn.
- Experience designing APIs with industry best practices.
- Strong knowledge of large language models, including open-source and commercial implementations, and their practical applications.
- Basic experience in building or deploying AI agents for specialized tasks.
- Hands-on experience with vector and graph databases, including understanding metrics for evaluating RAG systems.
- Proficiency in cloud platforms, preferably Google Cloud Platform (GCP).
- Familiarity with Docker and containerization technologies.
- Proven ability to ensure that GenAI deployments are scalable, secure, and efficient.